现年68岁的乔弗里·辛顿第一次听说神经网络是在1972年,当时他开始在爱丁堡大学攻读人工智能专业硕士学位。他在剑桥大学读本科时研究的是实验心理学,因此他对于神经网络很有热情。当时,神经网络不受青睐。“人们都觉得它太疯狂了。”辛顿回忆道。不过他坚持了下来。
神经网络带来了计算机像儿童那样学习(即通过体验,而非通过人类专门打造的程序带来的指令)的前景。“当时,很多的AI研究都是受到逻辑思考的启发。”他说,“但逻辑思考是人在较晚阶段才会做的事情。而两三岁的儿童并不做逻辑思考。所以我认为,神经网络是比逻辑思考要好得多的智能运作模式。”
在1950年代和1960年代,神经网络开始在计算机科学家当中流行开来。1958年,康奈尔大学研究心理学家弗兰克·罗森布拉特(Frank Rosenblatt)在一个美国海军支持的项目中打造了一个神经网络原型,他将其命名为Perceptron。它利用了一台占用一整个房间的穿孔卡片计算机。在经过50次尝试后,它学会了分辨左侧有标记的卡片和右侧有标记的卡片。《纽约时报》当时报道称,“海军今天公布了一款初期的电子计算机,它预计将能够走路,说话,看东西,书写,复制自己,以及意识到自己的存在。”
软件只有一层类神经元节点的Perceptron被证明用途很有限。但研究人员认为,如实施多层(或者深度的)神经网络,它会变得更加强大。
多层神经网络思路
辛顿如是解释该基本思路。想象一下,一神经网络在解读摄影图像,部分图像显示小鸟。“进行输入后,第一层神经元会检测到小小的边。一侧较暗,另一侧很明 亮。”他说,在分析第一层传来的数据时,下一层神经元会检测到“诸如两边连成的角的东西。例如,其中一个神经元可能会强烈地响应鸟嘴形成的角。
(责任编辑:tysd001)