很多令人兴奋的深度学习应用方面的新尝试都针对医疗领域。领导Andreessen Horowitz生物投资部门的斯坦福教授维贾伊·潘德(Vijay Pande)指出,大家都知道神经网络非常适用于图像识别,“医生所做的工作很多都是图像识别,不管是放射科、皮肤科、眼科还是很多其它的医科。”
放射科医师一生或许可以阅览成千上万张图像,而计算机则能够阅览数百万张。潘德称,“不难想象,图像识别问题上计算机能够做得更好,因为比起人类它们能够处理的数据要多得多。”
由计算机代劳的潜在好处并不仅仅包括准确率和分析速度的提升,还包括服务的大众化。随着相关技术变得标准化,最终将会有无数病患受益。
解决现实问题
当以还没有被想到的方式整合到其它的人工智能技术组合时,深度学习或许可以发挥出最大的威力。
例如,通过结合使用深度学习和一项名为强化学习的相关技术,谷歌的DeepMind已经取得了一些令人吃惊的成就。它利用那两项技术打造出了AlphaGo,该系统在今年3月击败了世界围棋冠军李世石——这被广泛认为是具有里程碑意义的人工智能成就。不同于IBM曾在1997年打败象棋冠军加里·卡斯帕罗夫(Garry Kasparov)的Deep Blue,AlphaGo并没有编入决策树,评估棋子位置的方程式,以及假定规则。DeepMind的CEO丹米斯·哈撒比斯(Demis Hassabis)表示,“AlphaGo主要通过和自己玩和观察重大的职业比赛来学习下围棋。”(训练期间,AlphaGo跟自己对战了100万盘围棋。)
此外,哈撒比斯认为,同样的技术可以应用于解决现实问题。
(责任编辑:tysd001)